Author : Chris Drawater
Date : Jan 2006
Version : 1.1

Apache 2.0, Tomcat 5.5, WARs & PostgreSQL 8.1 JDBC DataSources

on Windows XP

Document Status
This document is Copyright © 2006 by Chris Drawater.

This document is freely distributable under the license terms of the GNU Free Documentation License
http://www.gnu.org/copyleft/fdl.html). It is provided for educational purposes only and is NOT
supported.

Introduction

Tomcat is the official Reference Implementation for the SUN Java Servlet and JSP technologies and has
support for servlets, JSPs, clustering, load balancing, JNDI, JDBC, SSL, JMX, JAAS. Version 5.5
implements the Servlet 2.4 and JSP 2.0 specifications.

The Tomcat container is open source and can be downloaded, distributed and deployed for free — there are
no licence, support or maintenance costs.

This paper documents the setup of an Apache/Tomcat/JDBC development environment on Windows XP
and the deployment of an Application WAR file — it is published for R&D/information purposes only.

The principles should be easily transferable to Unix or Linux and for that reason, some of the full file
paths have been replaced by paths using the pseudo-environmental variables APACHE2 HOME &
TOMCAT HOME.

Technology
This paper is based around the following technologies :

Running on Windows XP Pro SP2
JDK 1.5.0
Apache 2.0.55
Tomcat 5.5.15
Connector : Apache Tomcat JK 1.2.15 for WIN32 — works with Apache 2.0.55 and later
PostgreSQL JDBC driver postgresql-8.1-404.jdbc3.jar

On Solaris 10
PostgreSQL 8.1.1

For demonstrative purposes, ‘vAuth’ is used as the name of the application.

© Chris Drawater, 2006 Apache 2, Tomcat 5.5, WARs & PG 8.1 DataSources pl/6

Miscellaneous Concepts and Terminology
A Tomcat worker is a Tomcat instance that is waiting to execute servlets or JSPs .
The Tomcat Context represents a web application.

The Apache Tomcat Database Connection Pool (DBCP) uses the Apache Jakarta-Commons Database
Connection Pool (see http://tomcat.apache.org/tomcat-5.5-doc/index.html)

The connector mod_jk is an Apache module that effectively acts as a ‘router’ to Tomcat, passing
servlets/JSP requests. It can be configured to provide load balancing , session ‘stickiness’ and fault
tolerance across Tomcat worker instances if required.

The process architecture is basically as follows :

Apache 2.0 --- mod_jk module --- AJP13 protocol --- (1..n) * Tomcat 5.5 instance(s)

Download Apache & Tomcat Binaries
Download the following distributions from http://www.apache.org

apache_2.0.55-win32-x86-no_ssl
apache-tomcat-5.5.15
mod_jk-apache-2.0.55.s0

Setup

In this example setup, all Apache software is installed under
C:\Program Files\Apache Group\

ie
C:\Program Files\dpache Group\Tomcat 5.5 #aka TOMCAT HOME
C:\Program Files\Apache Group\Apache?2 # aka APACHE2 HOME

(1) Install Apache http server via GUI
Domain - localhost
Server = localhost
Run as service on port 80 (port can be changed later)
Test by invoking http://localhost

(2) Install Tomcat via GUI

Run as service

Test by invoking http://localhost:8080

backup then edit file TOMCAT HOME\conf\tomcat-users.xml, to include the line :
<user username="manager" password="manager" roles="manager"/>

Test using http://localhost:8080/manager/status

(3) Install mod_jk Connector - rename mod_jk-apache-2.0.55.s0 to mod_jk.so and move to the Apache2
modules directory
APACHE2 HOME\modules

(4) For safety, backup files
APACHE2 _HOME)\conf\httpd.conf
TOMCAT HOME)\conf\server.xml

© Chris Drawater, 2006 Apache 2, Tomcat 5.5, WARs & PG 8.1 DataSources p2/6

(5) In the http server configuration file APACHE2 HOME\conf\httpd.conf', add the following lines

For Tomcat 5.5 with mod_jk
#

Update this path to match your modules location
LoadModule jk _module modules/mod_jk.so

location of workers.properties
JkWorkersFile confiworkers.properties

#jk logs
JkLogFile logs\mod jk.log

#jk log level [debug/error/info]
JkLogLevel info

Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "

JkOptions indicate to send SSL KEY SIZE,
JkOptions — +ForwardKeySize +ForwardURICompat -ForwardDirectories

JkRequestLogFormat set the request format
JkRequestLogFormat — "%w %V %T"

Send servlet for context /servlets-examples to worker named workerl
JkMount /*/serviet/* workerl

Send JSPs for context /jsp-examples to worker named worker1
JkMount /*jsp workerl

Optionally change the http listener port by changing line
Listen 80

to, for example
Listen 9999

(6)To let the Connector module know where to pass on servlet/JSP requests, create file
APACHE2 HOME)\conflworker.properties containing the following entries :

Define 1 Tomcat instance
worker.list=worker1

Set properties for workerl instance
worker.workerl.type=ajp13
worker.worker1.host=localhost
worker.worker1.port=8009
worker.workerl.Ibfactor=>50
worker.worker1.cachesize=10
worker.workerl.cache_timeout=600
worker.workerl.socket keepalive=1
worker.workerl.recycle timeout=300

© Chris Drawater, 2006 Apache 2, Tomcat 5.5, WARs & PG 8.1 DataSources p3/6

(7) Shutdown Apache
Restart Tomcat
Startup Apache

Tomcat Configuration - PostgreSQL JDBC DataSources

To configure a PostgreSQL DataSource specific to an application (ie not defined globally) create a
context.xml file containing :

<Resource
auth="Container"
description="vAuth Postgresql DB Connection"
name="jdbc/vAuthDS"
type="javax.sql.DataSource"

username="xyz"

password="xyz"
driverClassName="org.postgresql.Driver"
url="jdbc:postgresql://10.248.42.122:5432/db9"

initialSize="3"
maxActive="10"
maxldle="5"
minldle="3"
maxWait="5000"
validationQuery=""
poolPreparedStatements="false"
/>
JDBC DataSource Usage Example

A very simple example of application code acquiring a pooled database Connection object via a
DataSource using a JNDI lookup is shown below :

String dsString = "java:/comp/env/jdbc/vAuthDS";

Context ic = new InitialContext(),
DataSource ds = (DataSource) ic.lookup(dsString),

Connection con = ds.getConnection();

© Chris Drawater, 2006 Apache 2, Tomcat 5.5, WARs & PG 8.1 DataSources p4/6

Application WAR deployment
(1) Copy all required JDBC driver jar files > TOMCAT HOME\common\lib

For PostgreSQL 8.1,
postgresql-8.1-404.jdbc3.jar

Copy any shared application libraries (not visible to Tomcat internal code) =
TOMCAT HOME\shared\lib

(2) To enable Apache to pass servlet/jsp requests onto Tomcat but have Apache serve up static content
such as html, gifs etc, insert Connector directives similar to below

Send servlet & JSP requests to Tomcat instance workerl
JkMount /vAuth/serviet/* workerl
JkMount /~vAuth/* jsp workerl

Let apache serve up static content (html etc)
JkAutoAlias "C:\Program Files\Apache Group\Tomcat 5.5\webapps"

into the Apache server configuration file APACHE2 HOME\conf\httpd.conf
Restart Apache.

(3) To define any JNDI referenced JDBC DataSources & other resources used by the application, create an
application specific file context.xml (as per above) under META-INF (alongside WEB-INF) in the
WAR .

See http://tomcat.apache.org/tomcat-5.5-doc/config/context.html for further information.

The hierarchical application WAR directory tree should look something like this :

<app root>
<app root>/* jsp files
<app root>/* html files
<app root>/*.gif files
<app root>/*jsp files
<app root>/WEB-INF dir
<app root>/WEB-INF/web.xml file
<app root>/WEB-INF/classes dir
<app root>/WEB-INF/lib dir
<app root>/WEB-INF/* jar files
<app root>/META-INF dir
<app root>/META-INF/context.xml file

To enable the application to reference the DataSource, a resource XML entry (matching the DataSource
defined in context.xml) must be placed in the application web.xm! file — for example :

<resource-ref>
<description>vAuth Datasource</description>
<res-ref-name>jdbc/vAuthDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

© Chris Drawater, 2006 Apache 2, Tomcat 5.5, WARs & PG 8.1 DataSources p5/6

(4) Create & copy the application WAR file into directory TOMCAT HOME\webapps and tomcat will
automatically deploy it! It is important to note that the WAR name should match the (application =
context name).

Deployment Diagnostics

To log the contents (headers, footers, parameters, cookie contents etc) of requests passed to Tomcat,
uncomment the following lines

_n

<Valve className="org.apache.catalina.valves.RequestDumperValve'"/>

in file
TOMCAT HOME\conf\server.xml

which will log the info into file

TOMCAT HOME\logs\ catalina. <DATE>.txt

To check that the application context is correct and to log access to the application, add the following
XML
<Valve className="org.apache.catalina.valves.AccessLogValve"
prefix="vAuth_access_log." suffix=".txt"

pattern="common'"/>

into the application context.xml.
Concluding Remarks
This paper demonstrates, for R&D purposes, the basics for deploying an application WAR into an

Apache/Tomcat development environment.

Chris Drawater has been working with RDBMSs since 1987 and the JDBC API since late 1996.

© Chris Drawater, 2006 Apache 2, Tomcat 5.5, WARs & PG 8.1 DataSources p6/6

